180 research outputs found

    Tracking international graduate outcomes 2011

    Get PDF

    Interface contracts for TinyOS

    Get PDF
    ManuscriptTinyOS applications are built with software components that communicate through narrow interfaces. Since components enable fine-grained code reuse, this approach has been successful in creating applications that make very efficient use of the limited code and data memory on sensor network nodes. However, the other important benefit of components-rapid application development through black-box reuse-remains largely unrealized because in many cases interfaces have implied usage constraints that can be the source of frustrating program errors. Developers are commonly forced to read the source code for components, partially defeating the purpose of using components in the first place. Our research helps solve these problems by allowing developers to explicitly specify and enforce component interface contracts. Due to the extensive reuse of the most common interfaces, implementing contracts for a small number of frequently reused interfaces permitted us to extensively check a number of applications. We uncovered some subtle and previously unknown bugs in applications that have been in common use for years

    Investigating the signature of aquatic resource use within Pleistocene hominin dietary adaptations

    Get PDF
    There is general agreement that the diet of early hominins underwent dramatic changes shortly after the appearance of stone tools in the archaeological record. It is often assumed that this change is associated with dietary expansion to incorporate large mammal resources. Although other aspects of the hominin diet, such as aquatic or vegetal resources, are assumed to be a part of hominin subsistence, identifying evidence of these adaptations has proved difficult. Here we present a series of analyses that provide methodological support for the inclusion of aquatic resources in hominin dietary reconstructions. We suggest that bone surface modifications in aquatic species are morphologically distinguishable from bone surface modifications on terrestrial taxa. We relate these findings to differences that we document in the surface mechanical properties of the two types of bone, as reflected by significant differences in bone surface microhardness values between aquatic and terrestrial species. We hypothesize that the characteristics of bone surface modifications on aquatic taxa inhibit the ability of zooarchaeologists to consistently diagnose them correctly. Contingently, this difficulty influences correspondence levels between zooarchaeologists, and may therefore result in misinterpretation of the taphonomic history of early Pleistocene aquatic faunal assemblages. A blind test using aquatic specimens and a select group of 9 experienced zooarchaeologists as participants was designed to test this hypothesis. Investigation of 4 different possible explanations for blind test results suggest the dominant factors explaining patterning relate to (1) the specific methodologies employed to diagnose modifications on aquatic specimens and (2) the relative experience of participants with modifications on aquatic bone surfaces. Consequently we argue that an important component of early hominin diets may have hitherto been overlooked as a result of (a) the paucity of referential frameworks within which to identify such a component and (b) the inability of applied identification methodologies to consistently do so

    Documenting differences between early stone age flake production systems: An experimental model and archaeological verification

    Get PDF
    This study investigates morphological differences between flakes produced via “core and flake” technologies and those resulting from bifacial shaping strategies. We investigate systematic variation between two technological groups of flakes using experimentally produced assemblages, and then apply the experimental model to the Cutting 10 Mid -Pleistocene archaeological collection from Elandsfontein, South Africa. We argue that a specific set of independent variables--and their interactions--including external platform angle, platform depth, measures of thickness variance and flake curvature should distinguish between these two technological groups. The role of these variables in technological group separation was further investigated using the Generalized Linear Model as well as Linear Discriminant Analysis. The Discriminant model was used to classify archaeological flakes from the Cutting 10 locality in terms of their probability of association, within either experimentally developed technological group. The results indicate that the selected independent variables play a central role in separating core and flake from bifacial technologies. Thickness evenness and curvature had the greatest effect sizes in both the Generalized Linear and Discriminant models. Interestingly the interaction between thickness evenness and platform depth was significant and played an important role in influencing technological group membership. The identified interaction emphasizes the complexity in attempting to distinguish flake production strategies based on flake morphological attributes. The results of the discriminant function analysis demonstrate that the majority of flakes at the Cutting 10 locality were not associated with the production of the numerous Large Cutting Tools found at the site, which corresponds with previous suggestions regarding technological behaviors reflected in this assemblage

    A market assessment for modern cooking in Malawi

    Get PDF
    This paper presents the findings from a study which used household surveys and expert interviews to investigate cooking practices and understand the barriers and opportunities to the growth of the modern cooking sector in Malawi. The findings from expert interviews highlight barriers to electric and LPG cooking around the weakness of existing infrastructure, lack of consumer willingness and ability to pay and resistance to the adoption of modern cooking devices. The greatest opportunity for electric cooking is in urban areas and on mini-grids, while LPG is also most viable in urban areas, however knowledge and infrastructure gaps need to be narrowed to facilitate growth. An analysis of household surveys in urban, peri-urban and rural areas, using data from “indicative cooking diaries”, demonstrates the diversity of cooking practices in Malawian households by showing what, how, and with what, dishes are cooked. It is demonstrated that there is a latent demand for modern cooking in Malawi. Targeted research is needed to test modern cooking devices’ ability to cook Malawian dishes in ways which are acceptable to Malawian people, in order to effectively accelerate a transition towards modern cooking in Malawi and address the negative health and environmental impacts of biomass cooking

    A geometric morphometric relationship predicts stone flake shape and size variability

    Get PDF
    The archaeological record represents a window onto the complex relationship between stone artefact variance and hominin behaviour. Differences in the shapes and sizes of stone flakes-the most abundant remains of past behaviours for much of human evolutionary history-may be underpinned by variation in a range of different environmental and behavioural factors. Controlled flake production experiments have drawn inferences between flake platform preparation behaviours, which have thus far been approximated by linear measurements, and different aspects of overall stone flake variability (Dibble and Rezek J Archaeol Sci 36:1945-1954, 2009; Lin et al. Am Antiq 724-745, 2013; Magnani et al. J Archaeol Sci 46:37-49, 2014; Rezek et al. J Archaeol Sci 38:1346-1359, 2011). However, when the results are applied to archaeological assemblages, there remains a substantial amount of unexplained variability. It is unclear whether this disparity between explanatory models and archaeological data is a result of measurement error on certain key variables, whether traditional analyses are somehow a general limiting factor, or whether there are additional flake shape and size drivers that remain unaccounted for. To try and circumvent these issues, here, we describe a shape analysis approach to assessing stone flake variability including a newly developed three-dimensional geometric morphometric method (\u273DGM\u27). We use 3DGM to demonstrate that a relationship between platform and flake body governs flake shape and size variability. Contingently, we show that by using this 3DGM approach, we can use flake platform attributes to both (1) make fairly accurate stone flake size predictions and (2) make relatively detailed predictions of stone flake shape. Whether conscious or instinctive, an understanding of this geometric relationship would have been critical to past knappers effectively controlling the production of desired stone flakes. However, despite being able to holistically and accurately incorporate three-dimensional flake variance into our analyses, the behavioural drivers of this variance remain elusive

    Quantifying traces of tool use: a novel morphometric analysis of damage patterns on percussive tools

    Get PDF
    Percussive technology continues to play an increasingly important role in understanding the evolution of tool use. Comparing the archaeological record with extractive foraging behaviors in nonhuman primates has focused on percussive implements as a key to investigating the origins of lithic technology. Despite this, archaeological approaches towards percussive tools have been obscured by a lack of standardized methodologies. Central to this issue have been the use of qualitative, non-diagnostic techniques to identify percussive tools from archaeological contexts. Here we describe a new morphometric method for distinguishing anthropogenically-generated damage patterns on percussive tools from naturally damaged river cobbles. We employ a geomatic approach through the use of three-dimensional scanning and geographical information systems software to statistically quantify the identification process in percussive technology research. This will strengthen current technological analyses of percussive tools in archaeological frameworks and open new avenues for translating behavioral inferences of early hominins from percussive damage patterns.Palaeontological Scientific Trust; National Research Foundation; National Science Foundation [BCS-1128170, BCS-0924476]; Integrative Graduate Education and Research Traineeship Program [DGE-0801634]; George Washington University's Selective Excellence Fund; George Washington University Columbian College Facilitating Fund; Clare Hall College [JRF]; Newnham College [Gibbs Travelling Fellowship] Cambridge; European Research Council [283959]info:eu-repo/semantics/publishedVersio

    Introducing platform surface interior angle (PSIA) and its role in flake formation, size and shape

    Get PDF
    Four ways archaeologists have tried to gain insights into how flintknapping creates lithic variability are fracture mechanics, controlled experimentation, replication and attribute studies of lithic assemblages. Fracture mechanics has the advantage of drawing more directly on first principles derived from physics and material sciences, but its relevance to controlled experimentation, replication and lithic studies more generally has been limited. Controlled experiments have the advantage of being able to isolate and quantify the contribution of individual variables to knapping outcomes, and the results of these experiments have provided models of flake formation that when applied to the archaeological record of flintknapping have provided insights into past behavior. Here we develop a linkage between fracture mechanics and the results of previous controlled experiments to increase their combined explanatory and predictive power. We do this by documenting the influence of Herztian cone formation, a constant in fracture mechanics, on flake platforms. We find that the platform width is a function of the Hertzian cone constant angle and the geometry of the platform edge. This finding strengthens the foundation of one of the more influential models emerging from the controlled experiments. With additional work, this should make it possible to merge more of the experimental results into a more comprehensive model of flake formation

    A search for spectral hysteresis and energy-dependent time lags from X-ray and TeV gamma-ray observations of Mrk 421

    Get PDF
    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three "target-of-opportunity" (ToO) observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g. the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at 4×104\gtrsim 4\times 10^{-4} Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.Comment: 45 pages, 15 figure
    corecore